	Addition	Subtraction	Multiplication	Division
Rec	Children are encouraged to work practically to explore ways to add objects and show these in a range of representations. They will begin to use standard signs and symbols. They will use practical equipment such as bead strings or bead bars that can be used to illustrate addition They use numberlines and practical resources to support calculation and teachers demonstrate the use of the number line and standard notation where appropriate.	Children are encouraged to work practically to explore ways to subtract objects and show these in a range of representations. They will begin to use standard signs and symbols. They will use practical equipment such as bead strings or bead bars that can be used to illustrate subtraction. They use number lines and practical resources to support calculation and teachers demonstrate the use of the number line and standard notation where appropriate.	They will work on practical problem solving activities involving equal sets or groups. They will begin to use standard signs and symbols where appropriate. Teachers demonstrate the use of standard notation where appropriate. Children will explore grouping objects and identifying equal groups. They will begin to identify patterns in numbers and group, leading to counting in $2 s, 10$ and then $5 s$.	Children will explore ways of sharing into groups and grouping objects into sets including in play and problem solving. They will count in $2 s$ and $10 s$ and later in 5 s . They will begin to use standard signs and symbols where appropriate. Teachers demonstrate the use of standard notation where appropriate.

	Addition
Y1	Children will use practical equipment such as bead strings or bead bars that can be used to illustrate addition including crossing the tens boundary by counting on 2 then counting on 3 $(8+5=8+2+3)$ They will use standard signs and symbols (+ and $=$).

They use numbered lines and practical resources to support calculation and teachers demonstrate the use of an 'empty number line'.

Children will learn to recognise patterns in the addition of tens mentally and visually.

Children will begin to use 'empty number lines' themselves starting with the larger number and counting on to support mental calculations.
$\checkmark \quad$ First counting on in tens and ones. 34 + 23: 23
$34353637 \quad 47 \quad 57$
$\checkmark \quad$ Then helping children to become more efficient by adding the units in one jump (by using the known fact $4+3=$ 7).

Subtraction as bead strings or bead bars that can be used to illustrate subtraction including bridging through ten by counting back 3 then counting back 2 .

$00000000-00000-$

13-5=8

They will use standard signs and symbols (and =).

Children then begin to use numbered lines to support their own calculations - using a numbered line to count back in ones.

Children will learn to recognise patterns in the subtraction of tens mentally and visually.

The number line should also be used to show that 6-3 means the 'difference between
6 and 3 ' or 'the difference between 3 and
6 ' and how many jumps they are apart.
Children will begin to use empty number lines to support mental calculations. Counting back:
$\checkmark \quad$ First counting back in ones and tens. $47-23=24$

$\checkmark \quad$ Moving on to become more efficient by subtracting the units in one jump (by using the known fact 7-3=4).

Multiplication	
Children will explore grouping objects and identifying equal groups.	C
They will count in $2 s$ and $10 s$ and begin to count in $5 s$.	and

They will work on practical problem solving activities involving equal sets or groups.

They will use standard signs and symbols (x and $=$) where appropriate.

They will use pictorial representations;

and arrays
00000
$00000 \quad$ 5x3:15
00000
$3 \times 5=15$
to solve problems. The teacher will model how to use arrays to solve problems.

Children will be taught about times tables and strategies to learn them. They will be able to begin to recall times tables facts relating to the multiples that they are counting in and relate them to division facts.

Children will explore ways of sharing into groups and grouping objects into sets including in play and problem solving.

They will count in $2 s$ and $10 s$ and later in 5 s .

$\checkmark \quad$ Sharing equally

6 sweets shared between 2 people, how many do they each get?

They will use standard signs and symbols (\div and $=$) where appropriate.

\checkmark Grouping

They will understand and explore grouping. For example, 6 sweets are grouped into $2 s$ for each person. How many people get two sweets?

00
 00
 00

During practical exploration of sharing and grouping children will be introduced to remainders.

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& Sub \& \& \\
\hline \multirow[t]{11}{*}{Y2} \& \multirow[t]{11}{*}{\begin{tabular}{l}
Children will continue to use the 'empty' number line, beginning with the largest number first, and will also begin to \\
Bridge through ten will help them to become more efficient.
\[
37+15=52
\] \\
37 \\
40 \\
42 \\
52 \\
They will have confidence and a strategy in adding ones and tens including when crossing the tens boundary. For example counting to the nearest 10 , then adding the remainder. \\
They will develop this to add the ones in one jump and the tens in one jump. \\
\(37+15=52\) \\
Children will develop a good understanding of how to partition numbers to add. They will start by partitioning the smallest number only.
\[
\begin{aligned}
\& 37+15 \\
\& 37+10+5 \\
\& 37+5=42 \\
\& 42+10=52
\end{aligned}
\] \\
Children will learn that tens or ones can be added first, resulting in :
\end{tabular}} \& \multirow[t]{11}{*}{\begin{tabular}{l}
Children will continue to use the 'empty' number line and will \\
Bridge through ten to help them to become more efficient.
\[
42-25=17
\] \\
They will have confidence and a strategy in subtracting ones and tens including crossing the tens boundary. \\
Move on to subtracting the tens in one jump and the units in one jump. \\
\(47-23=24\) \\
Children will develop a good understanding of how to partition numbers to support subtraction.
\[
\begin{aligned}
\& 52-15 \\
\& 52-5=47 \\
\& 47-10=37
\end{aligned}
\] \\
Children will learn that tens or ones can be subtracted first, as long as the first number stays whole, resulting in :
\[
\begin{aligned}
\& 52-15 \\
\& 52-10=42 \\
\& 42-5=37
\end{aligned}
\]
\end{tabular}} \& \multirow[t]{11}{*}{\begin{tabular}{l}
Children will continue to explore multiplying numbers practically in a range of contexts. Children will develop their understanding of multiplication and use jottings to support mental calculations: \\
Repeated addition \\
3 times 5 is \(5+5+5=15\) or 3 lots of 5 or \(5 \times 3\) \\
Repeated addition can be shown easily on a number line: \\
and on a bead bar:
\[
5 \times 3=5+5+5
\] \\
5 5 \(\qquad\) \\
\(\checkmark \quad\) Commutativity \\
Children should know that \(3 \times 5\) has the same answer as \(5 \times 3\). This can also be shown on the number line. \\
Children should be able to model a multiplication calculation using an array.
\[
9 \times 4=36
\] \\
\(9 \times 4=36\) \\
They begin to complete equations using inverse operations where symbols stand for unknown numbers; e.g.
\(\times 5=20\)
\[
3 \times \triangle=18
\]

$$
\times 0=32
$$

} \& \multirow[t]{11}{*}{

Children will develop their understanding of division as sharing or grouping :

Sharing equally

6 sweets shared between 2 people, how many do they each get?

They will use standard signs and symbols (\div and $=$) where appropriate.

Grouping

They will understand and explore grouping. For example, 6 sweets are grouped into $2 s$ for each person. How many people get two sweets?

00

00

00

During practical exploration of sharing and grouping children will be introduced to remainders.

Jottings should be used to support mental calculations and begin to use grouping to solve division:

Grouping or repeated subtraction There are 6 sweets, how many people can have 2 sweets each?

They use repeated subtraction using a number line or bead bar

$$
12 \div 3=4
$$

\end{tabular}}

\hline \& \& \& \&

\hline \& \& \& \&

\hline \& \& \& \&

\hline \& \& \& \&

\hline \& \& \& \&

\hline \& \& \& \&

\hline \& \& \& \&

\hline \& \& \& \&

\hline \& \& \& \&

\hline \& \& \& \&

\hline
\end{tabular}

Addition	Subtraction	Multiplication	Division
* begin to add two or more decimal fractions with up to four digits and wither one or two decimal places. *know that decimal points should line up under each other, particularly when adding or subtracting mixed amounts, e.g. $401.12+26.85+0.71$ It is essential for children to continue to use a range of strategies to add numbers mentally and using jottings. They will have strategies to choose the most efficient method and know when formal methods are appropriate to use.	12.6 $-\quad 5.81$ becomes $\begin{array}{r} 12.60 \\ -\quad 5.81 \end{array}$	When digits are exchanged into the next column, ensure that they are crossed through after adding. And multiplying 3 digit numbers by 2 digits: $\begin{aligned} & \text { e.g } 124 \times 26 \\ & \times \begin{array}{c} 124 \\ \times \quad \frac{26}{744} \\ 1 \% \\ \frac{2480}{3224} \end{array} \\ & +\frac{3224}{1 Y} \end{aligned}$	Children should be confident at evaluating numbers to ascertain if a formal method is necessary or if their knowledge of division facts relating to times tables will enable them to use mental methods.

	Addition	Subtraction	Multiplication	Division
Y6	In year 6 children will consolidate their use of formal written methods for addition learned in previous years and will apply these in problem solving situations.	In year 6 children will consolidate their use of formal written methods for subtraction learned in previous years and will apply these in problem solving situations.	In year 6 children will practise and consolidate their use of formal written methods for long and short multiplication learned in previous years and will apply these in problem solving situations.	Children continue to consolidate their use and understanding of short division and move onto a formal written method for long division. They are able to show remainders as r..., fractions and decimals. $432 \div 15$ becomes:
	Children will be confident in adding numbers mentally, using jottings and formal methods and have secure strategies on which method to use. They will be able to explain and talk about the relationship between numbers and how to use this to add and solve problems.	Children will be confident in subtracting numbers mentally, using jottings and formal methods and have secure strategies on which method to use. They will be able to explain and talk about the relationship between numbers and how to use this to subtract and solve problems.	Children will be confident in multiplying numbers mentally, using jottings and formal methods and have secure strategies on which method to use. They will be able to explain and talk about the relationship between numbers and how to use this to multiply and solve problems.	
				Children will be confident in dividing numbers mentally, using jottings and formal methods and have secure strategies on which method to use. They will be able to explain and talk about the relationship between numbers and how to use this to divide and solve problems.

	Addition	Subtraction	Multiplication	

